2,877 research outputs found

    Game of Frontier Orbitals: A View on the Rational Design of Novel Charge-Transfer Materials

    Get PDF
    Since the first application of frontier molecular orbitals (FMOs) to rationalize stereospecificity of pericyclic reactions, FMOs have remained at the forefront of chemical theory. Yet, the practical application of FMOs in the rational design and synthesis of novel charge transfer materials remains under-appreciated. In this Perspective, we demonstrate that molecular orbital theory is a powerful and universal tool capable of rationalizing the observed redox/optoelectronic properties of various aromatic hydrocarbons in the context of their application as charge-transfer materials. Importantly, the inspection of FMOs can provide instantaneous insight into the interchromophoric electronic coupling and polaron delocalization in polychromophoric assemblies, and therefore is invaluable for the rational design and synthesis of novel materials with tailored properties

    Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    Full text link
    Strong electron correlation effects in the photophysics of quasi-one-dimensional π\pi-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional π\pi-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with D6hD_{6h} symmetry. We show that the excited state orderings in these molecules are reversed relative to that expected within one-electron and mean-field theories. Our results reflect similarities as well as differences in the role and magnitude of electron correlation effects in these two-dimensional molecules compared to those in polyenes.Comment: 11 pages, 5 figures, 2 table

    Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroantimonate as a Novel (One-Electron) Oxidant

    Get PDF
    Triethyloxonium hexachloroantimonate [Et3O+SbCl6-] is a selective oxidant of aromatic donors (ArH), and it allows the facile preparation and isolation of crystalline paramagnetic salts [ArH+•, SbCl6-] for the X-ray structure determination of various aromatic cation radicals. The mechanistic relationship between the Meerwein salt [Et3O+SbCl6-] and the pure Lewis acid oxidant SbCl5 is based on a prior ethyl transfer from oxygen to chlorine within the ion pair

    Disproportionation and Structural Changes of Tetraarylethylene Donors upon Successive Oxidation to Cation Radicals and to Dications

    Get PDF
    The stepwise (one-electron) chemical oxidation of the tetraphenylethylene donor and its substituted analogues (D) can be carried out by electron exchange with aromatic cations or antimony(V) oxidants to selectively afford the cation radical (D+•) initially and then the dication (D2+). The ready interchange of the latter establishes the facile disproportionation (i.e., 2D+• ⇌ D2+ + D) that was originally examined by only transient electrochemical techniques. The successful isolations of the crystalline salts of the tetraanisylethylene cation radical (1+•) as well as the tetraanisylethylene dication (12+) allow X-ray diffraction analysis (for the first time) to quantify the serial changes in the molecular structure upon successive oxidations. Five structural parameters (d, l, θ, φ, and q) are identified as quantitative measures of changes in bond (CαCβ, Cαanisyl) lengths, dihedral (CαCβ)/torsional (anisyl) angles, and quinoidal (anisyl) distortion attendant upon the removal of first one-electron and then another electron from the tetraanisylethylene framework. The linear variation of all five parameters in Chart 3 point to a strongly coupled relaxation of tetraanisylethylene (involving simultaneous changes of d, l, θ, φ, and q) to a severely twisted dication. Most noteworthy is the structure of the cation radical 1+• with d, l, θ, φ, and q values that are exactly one-half those of the dication. The complex molecular changes accompanying the transformation:  D → D+• → D2+ bear directly on the donor properties and the disproportionation processes of various tetraarylethylenes

    Novel Synthesis and Structures of Tris-Annelated Benzene Donors for the Electron-Density Elucidation of the Classical Mills−Nixon Effect

    Get PDF
    A versatile method for the high-yield synthesis of various tris-, bis-, and mono-annelated benzenes (as well as cyclooctatetraene) is based on the Pd-catalyzed coupling of three (or four) ethylenic units comprised of α,β-dibromoalkenes and α‘-alkenyl Grignard reagentsall carried out in a single pot. The particular application to tris(bicyclopentyl)-annelated benzene yields the syn isomer 1s in high purity; X-ray diffraction analysis confirms the aromatic bond alternation relevant to the Mills−Nixon effect. Most importantly, the efficient synthesis of 1s crystals of extraordinary quality allows us (for the first time) to make precise electron-density measurements of the “banana-type” distortion and the ellipticity (π-character) of the various aromatic C−C bondssufficient to identify the electronic origin of the classical Mills−Nixon effect. The unique electron-donor properties of tris-annelated benzenes also relate to their highly reversible one-electron oxidation potentials even in nonpolar solvents

    Vertical vs. Adiabatic Ionization Energies in Solution and Gas-Phase: Probing Ionization-Induced Reorganization in Conformationally-Mobile Bichromophoric Actuators Using Photoelectron Spectroscopy, Electrochemistry and Theory

    Get PDF
    Ionization-induced structural and conformational reorganization in various π-stacked dimers and covalently linked bichromophores is relevant to many processes in biological systems and functional materials. In this work, we examine the role of structural, conformational, and solvent reorganization in a set of conformationally mobile bichromophoric donors, using a combination of gas-phase photoelectron spectroscopy, solution-phase electrochemistry, and density functional theory (DFT) calculations. Photoelectron spectral analysis yields both adiabatic and vertical ionization energies (AIE/VIE), which are compared with measured (adiabatic) solution-phase oxidation potentials (Eox). Importantly, we find a strong correlation of Eox with AIE, but not VIE, reflecting variations in the attendant structural/conformational reorganization upon ionization. A careful comparison of the experimental data with the DFT calculations allowed us to probe the extent of charge stabilization in the gas phase and solution and to parse the reorganizational energy into its various components. This study highlights the importance of a synergistic approach of experiment and theory to study ionization-induced structural and conformational reorganization

    Spreading Electron Density Thin: Increasing the Chromophore Size in Polyaromatic Wires Decreases Interchromophoric Electronic Coupling

    Get PDF
    The development of novel polychromophoric materials using extended polycyclic aromatic hydrocarbons as a single large chromophore holds promise for long-range charge-transfer applications in photovoltaic devices and molecular electronics. However, it is not well-understood how the interchromophoric electronic coupling varies with the chromophore size in linearly connected molecular wires. Here, we show with the aid of electrochemistry, electronic spectroscopy, density functional theory calculations, and theoretical modeling that as the number of aromatic moieties in a single chromophore increases, the interchromophoric electronic coupling decreases and may reach negligible values if the chromophore is sufficiently large. The origin of this initially surprising result becomes clear when one considers this problem with the aid of Hückel molecular orbital theory, as at the polymeric limit energies of the molecular orbitals cluster to form bands and thus the energy spacing between orbitals, and thereby the electronic coupling must decrease with the chromophore expansion

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Comparative study of the performance of Supercritical Fluid Extraction, Microwave assisted Hydro-distillation and Hydro-distillation of Lemongrass (Cymbopogon Citratus): A Review

    Get PDF
    This review study deals with the collocation of the performance of three different separation techniques for the extraction of essential oil of Lemongrass (Cymbopogon Citratus) accordant with yield produced, time utilized for extraction, and overall cost of production. The system of Supercritical CO2 extraction (SFC), Microwave-assisted Hydro-distillation (MAHD), and conventional hydro-distillation (HD) method were juxtaposed from the yield and time point of view. SFE is a modern extraction technology that uses a Supercritical phase of CO2for the isolation of essential oil from lemongrass (Cymbopogon Citratus) and is a green process because of the use of natural and climate-friendly solventCO2. MAHD is a microwave-powered extraction procedure that provides efficient and effective heating to the plant material and uses deionized water as a solvent. A lab-scale apparatus of conventional hydro-distillation was used. SFE and MAHD were found to be superior green technology when compared with HD producing high quality of oil, in a short period with negligible environmental degradation
    corecore